Stress Marking on Urdu Speech Corpus using Acoustic Cues Stress Marking on Urdu Speech Corpus using Acoustic Cues

Presented by: Benazir Mumtaz

Centre for Language Engineering Al-Khawarizmi Institute of Computer Science University of Engineering and Technology Lahore, Pakistan

2nd June, 2015 Center for Language Engineering (CLE)

Contents

- Motivation
- Acoustic Impact of Stress
- The Process of Annotating Urdu Speech Corpus at Stress Tier
- The Process of Assessing Stress Tier Annotation
- Results and Discussion

Motivation

- To explore the unpredictability of prominence in speech
- To explore how stress can change the phonetic properties of a segment
- To prioritize the order of acoustic cues for stress marking in Urdu language
- To develop an Urdu text-to-speech system

Acoustic Impact of Stress

• Duration

- Intrinsic duration of the segment [1]
- Phonological length [2]
- Phrase final syllable [3]

• Fundamental frequency/f0

- Intrinsic f0 of the segment
- Contextual variation [4]
- Intensity
 - Intrinsic intensity of the segment
 - Emotional state of the speaker [4]

Description of Urdu Speech Corpus

- Speech Corpus Size: 30 minutes
- Recording Sampling Rate: 48 kHz
- Software: PRAAT

Stress Marking on Urdu Speech Corpus using Acoustic Cues Process of Annotating Urdu Speech Corpus at Stress Tier

- While listening to the file for the stress marking, take sub phrases ending in pauses or glottalization
- Assign '1' to a stressed syllable and '0' to an unstressed syllable

Prioritized Order of Acoustic Cues for Urdu Stress Marking On Urdu Speech Corpus using Acoustic Cues

- Duration of a vowel
- Stylized pitch track of a vowel
- Phrase initial glottalization
- Intensity of a vowel

Duration of a Vowel

- Categorize the vowel
- Analyze the position of a vowel in a syllable
- Comparison with the same shortest vowel
 - Do not select a vowel which comes at the "final syllable with PAU" position
 - Short vowel duration = less than 57ms
 - Long vowel duration = less than 100ms
- Comparison with the similar shortest vowel

Durational Analysis of Urdu Vowels

VOWEL	Non- Final 0	Non- Final 1	Final 0	Final 1	Final with PAU 0	Final with PAU 1	Increased Duration at Non-final	Increased Duration at final	Increased Duration at final with pause
Ð	57	81	61	86	75	107	24	25	32
e:	70	116	81	140	135	188	46	59	53
ã:	101	155	78	152	148	211	54	74	63
e	57	83	60	96	87	99	26	36	12
əi:	NA	134	113	195	201	245	NA	82	44

2nd June, 2015 Center for Language Engineering (CLE)

Pitch Contour

• The results indicate that falling or rising slope between L* and H* is abrupt and steep for stressed syllables in Urdu whereas it is gradual and flat for unstressed syllables.

Phrase Initial Glottalization

• Phrase initial glottalization

- Strong glottalization
- Weak glottalization

• Phrase final glottalization

Tapering off the vowel

Intensity of a Vowel

- It is observed that intensity of an accented syllable in Urdu is on average 3-5dB more than an unaccented syllable.
- However, the change in intensity with stress is vowel dependent.

Process of Assessing the Stress Tier

- Reference files generation
- Testing utilities to ensure that:
 - All the stress tier labels are from a defined numbering scheme (0, 1)
 - No interval is left unmarked
 - No change has been made at the automatically marked syllabification tier while annotating the stressed tier

Discussion

- Consonant Lengthening
- High intensity of a vowel
- Data scarcity issue in the wave file

Future Work

- Development of an algorithm
- Investigate the unexplored areas i.e., break index, secondary stress, emphatic stress and intonation pattern of Urdu language

Thank You

2nd June, 2015 Center for Language Engineering (CLE)

References

- 1. Klatt, Dennis H. "Linguistic uses of segmental duration in English: Acoustic and perceptual evidence." *The Journal of the Acoustical Society of America*59.5 (1976): 1208-1221.
- Laeufer, Christiane. "Patterns of voicing-conditioned vowel duration in French and English." *Journal of Phonetics* 20.4 (1992): 411-440.
- 3. Berkovits, Rochele. "Utterance-final lengthening and the duration of final-stop closures." *Journal of Phonetics* (1993).
- 4. Laukkanen, Anne-Maria, et al. "Physical variations related to stress and emotional state: a preliminary study." *Journal of Phonetics* 24.3 (1996): 313-335.